Category Archives: Fin Whale

Fin Whale biology and behavior near Kodiak Island

Spring

Bald Eagle in Flight

According to the calendar it is spring, but in Alaska, we won’t see much evidence of spring for another six weeks. The days are getting longer, and when the sun shines, I can feel some warmth in its rays, but it easily could snow six inches tomorrow, and no one would be surprised if the temperature dropped into the low twenties or even the teens.

After an abnormally warm winter this year, I don’t mind waiting until late May for wildflowers and leaves, but before the first forget-me-not blooms, other signs of spring will be evident. Bald eagle pairs will soar, circle, dive, and even cartwheel during their mating rituals; schools of herring will arrive to lay and fertilize eggs; and baleen whales, seals, and sea lions will follow the tasty herring into the bays. I dream about sitting on our dock on a sunny day, watching whales and other sea mammals chase and feed on herring. Some years the show is spectacular, and other years, the herring run is insignificant, and the whales are absent. The red foxes are also active in the spring, and their haunting mating screams often awaken me. By early June, we should start seeing does and their newborn fawns. By then, the eagle pairs will be tending their nests as their eggs hatch and the chicks depend on them for a nearly constant supply of food.

I am busy this time of year getting the camp ready and the meals cooked for the spike camps for our spring hunting season. I also have a trip planned to visit my family in Kansas in mid-May, so I can watch two of my nephews graduate from high school. Meanwhile, my novel, Murder Over Kodiak, is being re-released by a small publishing company in Anchorage, so I’m preparing for another round of promotion, and that is hard work. The first thing I’m planning to do is to host a “virtual” book-release party on Facebook. I’ll write more about this next week. For now, I’m trying to learn everything I can about hosting a virtual party. It’s overwhelming, and I hope I’m not in over my head! I admit that I have an uncomfortable relationship with social media.DSC_0168

Between my day job, promoting my novel, keeping up with my blog and my mystery newsletter, working on my next novel and my other writing projects, and getting ready for a trip to visit my family, my spring will be busy. No matter how rushed I am, though, if the sun is shining, and the wind is calm, you can find me sitting on our dock, craning my neck to watch eagles circle and soar, and inhaling the sweet, salty scent of the low tide while scanning the beach for foxes eating clams and mussels. I’ll also be glancing hopefully at the ocean for roiling schools of herring, and listening for the powerful exhalations of large fin and humpback whales. Spring is my favorite time of year, and I am never too busy to enjoy it. I’ll let you know what I see.

Fin Whale near Kodiak Island

Tell me about your spring. I want to hear about the beautiful tulips, daffodils and other flowers already blooming in most places, or if you live in New Zealand or anywhere else in the southern hemisphere, how is your autumn?

If you haven’t already done so, sign up for my mystery newsletter. I am working on my next edition. Also, I apologize to anyone who has recently tried to order my novel Murder Over Kodiak. As I mentioned above, it is currently being re-released, and it will be available again soon with a bright, new, shiny cover. I’ll give you a sneak preview next week and tell you about my mixed emotions going from an indie author/publisher to working with a publishing house.

 

Dead Whales

DSC_0683

This summer and fall several dead whales were spotted in the Western Gulf of Alaska, with the majority clustered around Kodiak Island. The number of deaths now stands at 43 whales, including fin whales, humpbacks, and, at least, one gray whale. So far, none of the whale carcasses that could be accessed have been in good enough shape to provide a clue to the cause of the deaths, but the National Oceanic and Atmospheric Administration (NOAA) is so concerned that they have classified the deaths an “unusual mortality event” (UME). A UME is defined as a significant die-off of a marine mammal population that demands an immediate response.  This designation triggers a focused, expert investigation into the cause.

At nearly the same time dead whales were being discovered in Alaska, whales were also dying off the coast of southern Chile. In November, biologists in Chile announced that in June, 337 sei whales were found beached in a region of southern Patagonia in Chile. This is one of the largest whale strandings ever recorded. While these whales were found beached, researchers think they died at sea and washed up on the beach.

What caused the deaths of the whales in Alaska and Chile, and did they all die from the same cause? Sadly, we may never know the answers to these questions, but biologists in both Alaska and Chile suspect a harmful algae bloom may be the culprit. Most of the dead whales are baleen whales that feed low on the food chain, making them highly susceptible to a toxic algae bloom. What makes this scenario even more believable is that abnormally warm water conditions in the Pacific Ocean this summer led to a massive toxic algae bloom of the single-celled algae Pseudo-nitzschia.

Pseudo-nitzschia produces domoic acid, a powerful neurotoxin. Under normal circumstances, a domoic acid concentration of 1,000 nanograms per liter is considered high, but in mid-May, concentrations 10 to 30 times this level were found in the North Pacific. Domoic acid accumulates in zooplankton, shellfish and fish, and when mammals and birds eat these organisms, the accumulated acid over-stimulates the predator’s nervous system, causing the animal to become disoriented and lethargic. Ingestion of high concentrations of domoic acid can lead to seizures and death.

In addition to Pseudo-nitzschia, the warm ocean water conditions in the Pacific also may have resulted in blooms of other toxic algae, but if toxic algae are the culprit, why aren’t other mammals or birds dying as a result? These are questions researchers are scrambling to answer, and recently they have been rechecking photos to see if there is evidence that the whales may have starved to death. Warmer ocean conditions could have led to a reduction in the prey of these huge whales that must eat  continuously all summer to build a blubber layer that will last them through the winter.

There is no time frame for when a UME must end, and biologists plan to keep researching the whale deaths for a while longer, but they admit the cause may never be known. One dead whale washed up a few miles from where we live, but we saw many other whales this summer that seemed to be feeding and acting normally, and I hope the whale deaths were an anomaly that won’t continue next spring and summer.

Next week I’ll go into more detail about toxic algae blooms. For those of you who have read my novel, Murder Over Kodiak, you may remember that Jane Marcus was studying paralytic shellfish poisoning, a condition caused by a poisonous algae bloom, and since toxic algae have been in the news this year, I think it will be an interesting topic to tackle.

I am FINALLY ready to send my first Mystery Newsletter to those who have signed up for my list. I plan to mail it on January 6th, so if you haven’t signed up for my list yet, do so soon on my home page. My first newsletter will chronicle the events of the McCarthy massacre of 1983. Thanks, and be sure to leave a comment to let me know what you think of my post!

Whale Behavior

This week, I want to take a closer look at whale behavior. Over the past few weeks, I’ve mentioned various behaviors, and while the reason for some behaviors seems obvious,others are not so easily explained.

Fin Whales
Fin Whales

Blowing or spouting: This is how whales breathe, so there is no mystery why whales blow. The spray of water is of course not from the whale’s lungs, but it is water that is blasted from the top of the blowhole when the whale exhales. What is interesting is that whales can sometimes be identified by their blow. If all I see is an exhalation and very little of the body, I can usually tell whether I’m looking at a humpback or a fin whale, the two most common whales in Uyak Bay. A fin whale’s blow is very tall and column-shaped while a humpback has a shorter, bushy blow.

DSC_0670

Fluking: Some species commonly raise their tail flukes in the air before a deep dive, and others do not. A humpback often raises its tail, while a fin whale seldom does. Why? I don’t know. Humpbacks are more acrobatic than fin whales, and this may have something to do with it.

DSC_0080 (2)

Breaching: This is when a whale propels its body upwards until at least 40% of it is clear ofDSC_0077 (2) the water. Adult blue whales rarely, if ever, breach, because they are too heavy. Fin whales are also very heavy and rarely breach, but when they do, it’s impressive! Humpbacks breach fairly often, and like most large whales, a humpback breaches by raising 90% of its body clear of the water surface and then twisting and crashing down with a large smack and a torrent of spray. Killer whales are capable of acrobatic leaps and somersaults. Scientists have offered many explanations as to why

Minke Whale
Minke Whale

whales breach, and it is probable they breach for a variety of reasons, including mating display, annoyance, aggression, a show of strength, a means of stunning prey, or removing parasites. I suspect one of the main reasons whales breach is because it’s fun. Wouldn’t you do that if you could?

 

DSC_0060

Slapping: This category includes flipper slapping, tail slapping, dorsal fin slapping, DSC_0650lobtailing or tail lobbing, and head slapping. Possible explanations for this behavior include a display, aggression, communication, or a means of stunning prey. Humpbacks often lobtail and flipper slap, and both actions make a very loud noise, so it would be an DSC_0642effective means of communication.

 

 

Spyhopping: This is simply when a whale sticks its head out of the water and

Photo by Bob Munsey
Photo by Bob Munsey

looks around. By doing this, it can locate a passing vessel or find escape holes or channels in pack ice. Whales may also spyhop to look at people on a boat. Since visibility is better in air than it is in water, it only makes sense that a whale might want to stick its head out of the water to get a better look.

 

DSC_0072Flipper Waving: Whales sometimes float on their backs and wave their fins in the air. No one knows why, but it looks fun.

Sleeping: One of our brilliant summer guests (I’m talking about you, Karin!) asked me how whales sleep. I was embarrassed to admit that I didn’t know, so I checked and was quite surprised by the answer. Since whales are mammals, they must breathe air, so how do they sleep without drowning? Research has shown that they either sleep while swimming slowly next to another animal, or they rest vertically or horizontally in the water. Scientists believe that when a whale or dolphin sleeps, it shuts down only half of its brain, and the other half stay awake. The side that is awake watches for predators or other dangers and also signals the animal to rise to the surface and take a breath of air every few minutes. After approximately two hours, the whale shuts down the active portion of its brain and the other side wakes up and takes over.  To read more about this amazing behavior, check out this article.

Photo by Bob Munsey
Photo by Bob Munsey

There are many other whale behaviors, including feeding behaviors that I did not cover here. If you have any questions, please ask. Also, if you love mysteries, sign up for my monthly Mystery Newsletter. I am currently working on the first issue, and I apologize to those of you who have already signed up for it. It is taking me longer than I anticipated to get the first installment ready to go.

 

Family Balaenopteridae: The Rorqual Whales

DSC_0130

Members of the whale family Balaenopteridae are known as the Rorqual whales. “Rorqual” is a Norwegian term that means “furrow whale,” referring to the throat grooves found in all species in this family. These grooves extend from underneath the lower jaw back to at least the pectoral flippers and are folds of skin and blubber. When a rorqual feeds, it lunges forward at high-speed, and these grooves expand, filling the mouth with a huge amount of water and prey. When the whale closes its mouth, it uses its tongue to strain the water through the baleen plates, trapping small fish and zooplankton. In addition to throat grooves, the other characteristic common to all rorquals is a dorsal fin.

With the exception of the minke whale, all rorquals are very large, but they are also streamlined and capable of swimming at incredible speeds. Most of the whales in this group have similar body shapes and fin shapes and placements, sometimes making it difficult to distinguish one species from another. At a distance, a small blue whale looks much like a fin whale, and unless you are close enough to see the lower jaw, a small fin whale and a large sei are identical in appearance. Humpback whales with their long pectoral fins are usually easy to differentiate from other rorqual species, and minke whales are much smaller than any other species in the family Balaenopteridae. Rorquals have flattened heads and two, centrally-located blowholes. The dorsal fin is located approximately one-third of the body length forward from the fluke notch, and the tail flukes are large and wide.

In this post, I will briefly cover blue whales, fin whales, sei whales, and minke whales, and next week, my post will be about humpback whales. The reason why I’m dividing it up like this is that there is far more information about humpbacks than there is about the other species in this family. While it is known that most rorquals feed in high latitudes during the summer and breed and give birth during the winter in temperate or tropical latitudes, biologists do not know how far they migrate and what percentage of the population migrates. We see fin whales and even humpbacks all winter here on Kodiak Island, so it is clear that not all individuals migrate every year.

Blue whales are the largest animals to have ever lived on earth. Females may reach 90 ft. (28 m) in length. They are a mottled bluish gray and streamlined with a broad, rounded head, long, slim flippers, and a very small dorsal fin that is located so far back toward the flukes that it is usually only seen when they are about to begin a dive. They have broad, triangular flukes are only slightly notched, and their baleen is solid black. I have never seen a blue whale, because they are usually far off shore in deep water near the continental shelf. They are rarely seen in the bays around Kodiak Island, but in the summer, they can be found in the Gulf of Alaska and the Bering Sea. I think it is interesting that the largest animal on the planet dines on one of the smallest animals. Blue whales primarily eat euphausiids, small shrimp-like organisms that are commonly called krill.

DSC_0031

Fin whales are the second-largest species of whale. An average adult female fin whale is 73 ft. (22 m) in length, while an average male is 70 ft. (21 m). A fin whale’s upper jaw is V-shaped and flat on the top, and it has a distinct ridge on its back that extends from the dorsal fin to the tail fluke. Its dorsal fin is up to two feet tall and is curved with a steep backward angle and a blunt tip. The flukes are broad and triangular with pointed tips and a central notch. A fin whale has a light gray to brownish-black back and sides, with two lighter-colored chevrons that begin behind the blowholes and slant down the sides toward the fluke and then swirl up and end behind the eye. The undersides of the body, flippers, and fluke are white. The left lower jaw of a fin whale is dark gray, but the right lower jaw is white, and this asymmetrical coloration extends to the baleen plates. Scientists think this asymmetrical jaw color may somehow aid fin whales in capturing prey. If seen up close, the right lower jaw of a fin whale clearly distinguishes it from a blue or sei whale. Fin and blue whales produce the loudest biological sounds in the ocean, and recent research on fin whales shows that only males produce these vocalizations. The sounds are simple and consist of low-frequency moans and grunts and high-frequency pulses. Scientists suspect that males emit these sounds to attract females from great distances, and they worry that sounds from commercial ships, military sonar, seismic surveys, and ocean acoustic research may reduce the distance over which receptive females can hear the vocalizations of males.

DSC_0110

Of all the large whales, perhaps the least is known about sei (pronounced say) whales. In the southern part of their range sei whales coexist with Bryde’s whales, and until the early 1900s, they were considered the same species. The name “sei” comes from the Norwegian word “seje”, which means pollock, because sei whales appeared off the coast of Norway each year at the same time large schools of pollock arrived to feed on the abundant plankton. Sei whales are sleek and streamlined, and are one of the fastest swimming baleen whales, reaching speeds of 22 mph. They may reach a length of 65 ft. (20 m), but a length of 54 to 55 ft. (3.7 to 16.8 m) and a weight of 14 to 17 tons is more typical. Sei whales have a dark bluish-gray body with white on the ventral surface. The flukes and flippers are dark on both the dorsal and ventral surfaces. The snout is pointed, and there is a single prominent rostral ridge running from the blowholes to the snout. The dorsal fin is tall and curved, and the baleen is uniformly ashy black with fine, silky fringes. Sei whales normally feed near the surface, and they are primarily skimmers instead of gulpers like blue and fin whales. Small copepods are their preferred food, although they will also eat other zooplankton and small fish.

Minke Whale
Minke Whale

 

Minke whales are the smallest of the rorquals. Males average 26 ft. (8 m), and females average 27 ft.(8.2 m). Both males and females weigh approximately 10 tons. The story is that the minke (pronounced mink-ey) whale was named after a Norwegian whale spotter named Meincke, who mistakenly identified a small minke whale as a blue whale, the largest of all whales. Minke whales have a very narrow, pointed jaw, a single ridge that runs from the tip of the jaw to the blowhole, and a dorsal fin that is tall and curved. The flippers are slender and pointed at the tips, and the flukes are broad, pointed, and notched in the center. The body is dark gray on the back and white on the ventral surface. There is a distinctive white band on each flipper, and the extent and orientation of the band varies between individuals. The baleen is yellowish-white. Minke whales have an inconspicuous blow that is often hard to spot in the ocean, but they do occasionally breach, and you can see the white fin band on the fin of the breaching minke in the above photo.

My post next week will be about the most famous member of the rorqual family, the humpback whale. Please let me know if you have any questions or would like to add anything to these posts.

For those of you who are mystery lovers, please visit my home page and sign up for my monthly Mystery Newsletter.

Baleen Whales

DSC_0683

Baleen whales are in the suborder Mysticeti. They differ from toothed whales in a number of ways. All mysticetes have two nostrils or blowholes, while toothed whales (odontocetes) have only one blowhole. Mysticetes have a symmetrical skull, while most odontocetes have assymetrical skulls. Most toothed whales have a specialized echolocation system that is lacking in baleen whales. Female mysticetes are usually larger than their male counterparts, but other than that, there is no sexual dimorphism, while there is often marked sexual dimorphism in odontocete species. The most obvious difference between these two suborders, though, is that instead of teeth, mysticetes have baleen made from keratin, the same substance that comprises hair and fingernails. Stiff plates of baleen grow down from the gum of the upper jaws, and depending on the species, the baleen may be black, gray, creamy yellow, white, or a mixture of these colors. The outer edge of each plate is smooth, and the inner edge is frayed. The frayed inner edges intertwine to form a mat, allowing whales to filter feed and trap zooplankton and small fish in their baleen. Like hair and fingernails, baleen continues to grow at its base and wear along the edges.DSC_0670

All baleen whales are carnivorous, and most eat zooplankton or small schooling fish.  Most mysticetes employ one of two different systems for feeding, and some species use both systems, depending on the situation and prey density. These systems can be described as “skimming” and “gulping.” Skimming is when a whale swims open-mouthed through a food supply, while gulping, as its name implies, is achieved when a whale swims through a food swarm and gulps large amounts of water and food by extending the ventral grooves in its throat to greatly enlarge the size of its mouth, depressing its tongue, and opening its lower jaw to a nearly 90 degree angle from the body axis. After engulfing the prey, the whale closes its mouth and forces the excess water out through the baleen. It then uses its tongue to transfer the prey to its gullet, and from there, it passes into the stomach. Gray whales, which are mainly bottom feeders, have their own unique style of feeding. Most baleen whales feed for only four months during the summer, and they must consume enough food during this time to sustain them for the rest of the year. It has been calculated that a baleen whale consumes 4% of its body weight per day during the summer feeding season.

Baleen whales are some of the largest animals on earth. In fact, blue whales are the largest animals to have ever inhabited the planet. The buoyancy of water supports a whale’s body, allowing it to grow to a greater size than it could if it lived on land. This large size has several advantages. The decreased surface to body-volume ratio helps a whale conserve heat. The large body size also makes a whale safer from predators, and it allows a whale to eat large quantities of food when food is available and then store this energy in the form of blubber that can be broken down for energy during periods of fasting.

The general body shape of most baleen whales is cylindrical, tapering at the ends. This shape is energy-efficient for swimming and creates less drag. A whale’s skin is smooth and has no oil glands or pores. Many species of mysticetes have sparse hairs on the snout, jaws, and chin, but the lack of hair or fur on the body is an adaptation to reduce drag when swimming.

DSC_0650A baleen whale has a small, external ear opening on each side of its head that leads to an auditory canal. The middle and inner ear is similar to that of other mammalian species, but the ears are adapted for hearing under water.

Baleen whales produce low-frequency sounds, mostly below 5000 Hz. These are some of the loudest sounds produced by any animal, and the sounds travel hundreds of kilometers under water. Scientists think these loud sounds may be used for long-range contact, advertising for a mate, greeting, orientation, navigation, or announcing a threat. The sounds consist of very-low frequency moans, grunts, thumps, and knocks and higher frequency chirps, cries, whistles, and songs.

Some baleen whales can swim as fast as 20 mph (32 kph). They swim by using powerful up-and-down strokes with their tails to push their streamlined bodies through the water. While some mysticetes can dive to depths over 1000 ft (355 m), most species feed at relatively shallow depths. A whale holds its breath when under water, and when it surfaces, it opens its blowholes and blasts a loud exhalation. The whale then quickly inhales and closes its blowholes before diving. Most baleen whales surface and breathe several times before diving. The spout of water that is often the first visual clue of a whale’s presence, does not come from the whale’s lungs. As with other mammals, a whale’s lungs do not tolerate water. Instead, the water spout is produced from water that was on top of the blowhole when the whale exhaled, and the water condenses as the respiratory gases expand in the air. The size and shape of a whale’s “blow” varies from species to species.

Mysticetes can be found in all oceans. They live in polar, tropical and temperate zones. There are three families in the suborder Mysticeti. These are Balaenopteridae, or the Rorqual Whales; Balaenidae, the Right Whales; and Eschrichtidae, the Gray Whale. In my next few blogs, in the family Balaenopteridae, I will cover the blue whale, the fin whale, the sei whale, the Minke whale, and the humpback whale. In the family Eschrichtidae, I will cover the gray whale.

While I see these whales on their summer feeding grounds, I know many of you have watched whales in their winter breeding areas, perhaps in Mexico or Hawaii. Please share your experiences!

Sign up for my monthly Mystery  Newsletter. Beginning in late November, I will tell some stories about true-life, Alaskan crimes.

* indicates required




 

Whales

Fin whales in Uyak Bay
Fin whales in Uyak Bay

Whales have been on my mind lately; probably because I’ve seen some nearly every time I’ve gone for a boat ride this summer and fall. Zooplankton and schools of small fish have swarmed the bay all summer and fall, providing abundant food for everything from larger fish, gulls, eagles, other birds, harbor seals, sea lions, and of course whales. I’m certain that if I jumped in my boat right now, within in minutes, I’d be in the midst of several huge fin whales, whose 18-ft. tall exhalations surpass any choreographed water-fountain show in Las Vegas. I’d probably also see two or three humpbacks waving their tail flukes in the air and perhaps leaping out of the ocean and slapping their large pectoral fins and tail flukes on the water.

I’ve also been thinking about whales, because that is the chapter I’m working on for my book on the wildlife of Kodiak Island. While I love whales, writing about them has been an arduous process, since little is known about many species, and I must draw bits and pieces of information from an array of sources. This painstaking research, though, has provided me with a better understanding of these huge, intelligent creatures, so I thought I would write a few posts about them. I will focus on the whales that can be seen near Kodiak Island, and I will admit that I have not seen all these species, because either they migrate past the island and do not enter the deep bays, or they spend their lives off shore. There is also another, darker reason for me to write about the whales near Kodiak Island. This summer more than 30 whales (mostly fin and humpback) died near Kodiak, and biologists are scrambling to discover the cause.

Whale species commonly found near Kodiak include fin whales, the second largest species of whale; sei whales, the third largest species of whale; humpbacks; Minke whales; and Orcas, or killer whales (although Orcas are actually dolphins, not whales). Gray whales migrate past Kodiak on the way from their breeding and birthing areas near Mexico to their northern feeding grounds, and blue whales, the largest species of whale, can be found off shore in the Gulf of Alaska. Blue whales, fins, sei whales, humpbacks, Minkes, and gray whales are all filter feeders and have baleen instead of teeth. Killer whales, of course, have teeth.

As you probably know, whales, like humans, are mammals. They have lungs and must breathe air to survive. They are warm-blooded, and like most mammals, they bear live young. Whales nurse their young with milk, and while you may not think of a whale having hair, all whales do have hair at some stage in their development. Whales are in the order Cetacea, and all members of this order are believed to have evolved from hoofed animals, such as cows, sheep, and camels, 45 million years ago.

All cetaceans have forelimbs that have been modified into flippers and no hind limbs. Their tails are horizontally flattened, and they breathe through a nostril or blowhole, located on the top of the head. Whales have internal sensory and reproductive organs to reduce drag when swimming, and cetacean mothers nurse their calves with a pair of teats that are concealed in slits along the body wall.

Cetaceans living in the cold ocean waters of the North Pacific must somehow maintain a body temperature that is nearly the same as a human’s body temperature, and a whale uses a number of mechanisms to accomplish this feat. First of all, it has a thick layer of blubber which has few blood vessels, reducing heat loss at the body surface. A whale has a counter-current exchanger, where veins at the periphery are surrounded by arteries. Heat lost by vessels flowing from the warmer core toward the cold periphery is at least partially absorbed by vessels flowing from the periphery to the core. A cetacean also has a fairly high metabolic rate to produce heat, and it has a low body surface to volume ratio, which conserves heat. Also, a whale breathes at a slower rate than a land mammal does, so warm air is expelled less frequently.

The order Cetacea is divided into two suborders: The Mysticeti or baleen whales and the Odontoceti, or toothed whales. I primarily will be discussing the Mysticetes, and next week, I’ll describe baleen and how it is used. Please leave a comment if you have any questions or would like to add anything about whales. I would love to hear about your whale experiences!

In late November or early December, I plan to start a monthly newsletter focused more on mysteries and my fiction writing. My first several newsletters will chronicle some true-life Alaska crimes. If this sounds interesting, please subscribe to my e-mail list.

Subscribe to my monthly e-mail mystery newsletter. Beginning in late November, I will begin chronicling some true-life Alaskan crimes!

* indicates required




 

Mid-Summer 2015

Mid-Summer 2015 is the post I wrote for our Munsey’s Bear Camp website.

DSC_4021

I love watching our guests relax as they transition from their stress-filled lives into our peaceful, wild world.  When they first step off the floatplane, they are often quiet and perhaps even a little wary.  They’ve just flown forty-five minutes into the heart of the Kodiak National Wildlife Refuge, and there are no roads or stores here.  There’s just a small lodge and a few boats.

We feed them lunch, Mike explains what they will be doing for the next few days, and we tell them to meet us at the dock in twenty minutes for their first-afternoon cruise on our 43-ft. boat.  They laugh at the sea otters and harbor seals and snap photos of bald eaglesDSC_1164 and other wildlife, but most remain quiet, and separate groups keep to themselves.

On the first full day, we go either bear viewing or fishing, and by that evening, I begin to see the first signs of relaxation, as our guests step out of their lives for a few days and into a world that revolves around tides and wild animals.  They ask us questions about the wildlife they’ve seen, tell us about their families, and describe other travel adventures they have had.  They linger for a few minutes after dinner, discussing the day’s events with their fellow adventures.

By the fourth day, the mood on the boat is often raucous.  These strangers, who on day one traded only polite comments, are now teasing each other and sharing photos and e-mail addresses. They sigh the last morning when they step off our boat for the final time.  They complain that the week flew by too quickly and vow to return again soon.

DSC_3890We’ve had beautiful weather so far this summer, and we’ve enjoyed great whale watching.  At times, we’ve been surrounded by fin whales, and one of the highlights of the summer was when a humpback breached several times right in front of us!  Halibut fishing has been very good, and we’ve had some of the best salmon fishing we can remember.  Pink salmon swarmed into Brown’s Lagoon in July, and we had non-stop action.  Meanwhile, large schools of silver salmon filled the bay.  The run was a month early, and it is likely that the early salmon were headed elsewhere and just stopped in Uyak Bay to feast on the large schools of herring and other small fish that have been so abundant this summer.  The rich food base of krill and small schooling fish is also undoubtedly why we’ve had so many whales in the bay.

Due to our warm weather, we’ve had another bumper crop of berries this summer, and theDSC_3823 bears are torn between catching salmon and feeding on berries.  Bears are much more plentiful than they were the first half of last summer, but we are sometimes frustrated as we wait for them to lose interest in berries and concentrate on salmon.  The rich and plentiful food source of berries and salmon the last few summers has provided great nutrition for the bears, and we’ve seen numerous groups of sows and cubs this summer.

On the home front, Mary Schwarzhans is again wowing our guests with her creative and delicious meals, and we are thrilled that Mary’s sister, Emma, is also working for us this summer.  The two of them make our lives much easier and more pleasant, and our guests tell us that even if we didn’t have spectacular wildlife and fishing here, they would return to Munsey’s Bear Camp just for the food.  I suspect that stepping out of their lives and truly relaxing for a few days might be another reason to return.

Krill

This week, I want to talk about krill.  Kodiak Island is known for its big animals.  We have the largest brown bear, the largest Sitka black-tailed deer, one of the largest red fox subspecies, the largest halibut, and the largest whales, just to name a few examples, but in this post, I’ll discuss some of the most diminutive but extremely important animal species in our marine environment.  That’s right, I’m talking about those tiny little zooplankton in the ocean.

Okay, you are yawning, but please keep reading.  Euphausiid species, more commonly known as krill, are the food for everything from adult herring and Pollock to marine birds to blue and fin whales, the largest animals on earth; and perhaps more importantly, they are on the menu for the juveniles of most species of fish in the ocean.

I guess if I really wanted to start at the base of the food chain, I’d write about phytoplankton, but to be honest, phytoplankton species, important as they are, even make me yawn.  I find zooplankton, and especially krill, much more interesting, because I can see these organisms swimming in the water, and I sometimes see piles of their dead bodies when they wash up on the beach.  Unfortunately, I have no photos to show you, and I’m not artistic enough to draw a sketch, but picture a very small shrimp.  Unlike shrimp, though, the gills of krill are exposed and hang below the carapace, and the exoskeletons are translucent, allowing a view of the internal organs.

Krill reproduce and grow in response to blooms of phytoplankton and warming water temperatures.  When phytoplankton bloom in the spring, producing a food supply, euphausiids populations swell in response, subsequently providing food for nearly everything else in the ocean environment.  We see schools of herring consuming krill, and sea gulls and other marine birds frantically diving into the ocean to pluck out the small organisms.  Since krill are heavier than water, they must continually swim to keep from sinking.  They form dense swarms that may look like balls or extensive layers that may be several meters thick. Baleen whales focus on these swarms, often gulping several hundred kilograms of krill at a time.

I’m sure you get the idea that krill, as well as other zooplankton, are a vital food source, either directly or indirectly, for most animals in the marine environment.  Here on Kodiak, I think of krill as a sign of spring, because when their populations swell, the ocean is suddenly alive with the activity of diving birds, huge schools of herring, and whales spouting.  Euphausiids, though, are very sensitive to changing environmental conditions, and if their populations fail, the rest of the marine ecosystem could, and undoubtedly would, follow.  Small and unexciting as they may be, we need to understand zooplankton population structures and their physical and chemical needs and monitor the health of these populations in our oceans.

Without phytoplankton and zooplankton, the oceans would just be water.  Those tiny organisms don’t seem as boring anymore, do they?

Dead Whales

This summer and fall several dead whales were spotted in the Western Gulf of Alaska, with the majority clustered around Kodiak Island. The number of deaths now stands at 43 whales, including fin whales, humpbacks, and, at least, one gray whale. So far, none of the whale carcasses that could be accessed have been in good enough shape to provide a clue to the cause of the deaths, but the National Oceanic and Atmospheric Administration (NOAA) is so concerned that they have classified the deaths an “unusual mortality event” (UME). A UME is defined as a significant die-off of a marine mammal population, and such an event demands an immediate response and triggers a focused, expert investigation into the cause.
At nearly the same time dead whales were being discovered in Alaska, whales were also dying off the coast of southern Chile. In November, biologists in Chile announced that in June, 337 sei whales were found beached in a region of southern Patagonia in Chile. This is one of the largest whale strandings ever recorded. While these whales were found beached, researchers think they died at sea and washed up on the beach.
What caused the deaths of the whales in Alaska and Chile, and did they all die from the same cause? Sadly, we may never know the answers to these questions, but biologists in both Alaska and Chile suspect a harmful algae bloom may be the culprit. Most of the dead whales are baleen whales that feed low on the food chain, making them highly susceptible to a toxic algae bloom. What makes this scenario even more believable is that abnormally warm water conditions in the Pacific Ocean this summer led to a massive toxic algae bloom of the single-celled algae Pseudo-nitzschia.

Pseudo-nitzschia produces domoic acid, a powerful neurotoxin. Under normal circumstances, a domoic acid concentration of 1,000 nanograms per liter is considered high, but in mid-May, concentrations 10 to 30 times this level were found in the North Pacific. Domoic acid accumulates in zooplankton, shellfish and fish, and when mammals and birds eat these organisms, the accumulated acid overstimulates the predator’s nervous system, causing the animal to become disoriented and lethargic. Ingestion of high concentrations of domoic acid can lead to seizures and death.

In addition to Pseudo-nitzschia, the warm-ocean-water conditions in the Pacific also may have resulted in blooms of other toxic algae, but if toxic algae are the culprit, why aren’t other mammals or birds dying as a result? These are questions researchers are scrambling to answer, and recently they have been rechecking photos to see if there is any evidence that the whales may have starved to death. Warmer ocean conditions may also have led to a reduction in the prey of these huge whales that must eat nearly continuously all summer to build a large enough blubber layer to last them through the winter.

There is no time frame for when a UME must end, and biologists plan to keep researching the whale deaths for a while longer, but they admit the cause may never be known. One dead whale washed up a few miles from where we live, but we saw many other whales this summer that seemed to be feeding and acting normally, and I hope the whale deaths were an anomaly that won’t continue next spring and summer.

Next week I’ll go into more detail about toxic algae blooms. For those of you who have read my novel, Murder Over Kodiak, you may remember that Jane Marcus was studying paralytic shellfish poisoning, a condition caused by a poisonous algae bloom, and since toxic algae have been in the news this year, I think it will be an interesting topic to tackle.

I am FINALLY ready to send my first Mystery Newsletter to those who have signed up for my list. I plan to mail it on January 6th, so if you haven’t signed up for my list yet, do so soon on my home page. My first newsletter will chronicle the events of the McCarthy massacre of 1983. Thanks, and be sure to leave a comment to let me know what you think of my post!